

For Research Use Only. Not for use in diagnostic procedures.

IMPORTANT -20 °C storage required for most components immediately upon receipt



NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

### Contents

| 1. Product description                                                                       | 3  |
|----------------------------------------------------------------------------------------------|----|
| 2. Product designations and kit components                                                   | 4  |
| 3. Component storage conditions and warnings                                                 | 5  |
| 4. Additional materials and equipment needed                                                 | 5  |
| 5. Protocol                                                                                  | 6  |
| 5.1. Programme the thermal cycler.                                                           | 7  |
| 5.2. Multiplex PCR to produce overlapping SARS-CoV-2 amplicons                               | 7  |
| 5.3. Indexing reaction master mix set-up                                                     | 8  |
| 5.4. Size selection and clean-up #1                                                          | 8  |
| 5.5. Indexing                                                                                | 9  |
| 5.6. Size selection and clean-up #2                                                          | 9  |
| 5.7. Library quantification                                                                  | 10 |
| 5.8. Sequencing                                                                              | 10 |
| 6. Technical support                                                                         | 11 |
| 7. Appendices                                                                                | 11 |
| 7.1. Appendix A: Sequencing depth and multiplexing options                                   | 11 |
| 7.2. Appendix B: Indexing Plate 1 sequences and layout                                       | 11 |
| 7.3. Appendix C: Basic overview of the NxSeq SARS-CoV-2 Whole Genome Library Kit protocol    | 15 |
| Notice of limited label license, copyright, patents, warranties, disclaimers and trademarks, | 15 |

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

### 1. Product description

The NxSeq<sup>™</sup> SARS-CoV-2 Whole Genome Library Kit supplies the targeting primers, enzymes and other reagents required to build overlapping, sequenceable, targeted amplicons across the SARS-CoV-2 genome for whole genome next generation sequencing on Illumina sequencers. Indexing plates must be purchased separately (Cat. No. GEN-9754-001 thru GEN-9754-015), and 15 different indexing plates are available with 96 different combinatorial dual indexes (CDI) per plate for a total of 1440 CDI. This kit is compatible with single- or double-stranded cDNA input made from SARS-CoV-2 positive samples. We recommend choosing a cDNA synthesis system that uses a random-primed synthesis method, exhibits RT processivity >1 kb, and is designed to be used in two-step RT-PCR workflows.

The general kit protocol proceeds as follows:

- 1. Single- or double-strand cDNA synthesis of SARS-CoV-2 positive RNA samples (not included in this kit).
- 2. Multiplex PCR in a single tube using the cDNA as input and the SCV2 Targeting Primers and high fidelity PCR Master Mix included in this kit to produce overlapping amplicons covering the SARS-CoV-2 genome.
- 3. Addition of indexed Illumina-compatible sequencing adaptors to each amplicon.
- 4. qPCR-based library quantitation followed by library normalisation and sequencing (not included).

The targeting primers and subsequent 341 SARS-CoV-2 amplicons were validated using synthetic SARS-CoV-2 genomes from Twist Biosciences (Cat. no. 102024). As an example of successful cDNA synthesis, we used the Superscript<sup>TM</sup> IV First-Strand Synthesis System (ThermoFisher, Cat. no. 18091050) and an input RNA sample composed of the 50 ng of Universal Human Reference RNA (Agilent, Cat. No. 740000) spiked with 1000 copies of the synthetic viral genome. The recommended Superscript IV protocol was followed, except the RT incubation at 50 °C was increased from the recommended 10 minutes to  $\geq$ 30 minutes. The RNase H step was not performed, and 10 µL of the final cDNA was used directly as input into the targeted amplicon protocol outlined in this manual.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

### 2. Product designations and kit components

| Product                                            | Kit size        | Catalogue<br>number | Reagent description          | Part<br>numbers | Volume  |
|----------------------------------------------------|-----------------|---------------------|------------------------------|-----------------|---------|
| NxSeq<br>SARS-CoV-2<br>Whole Genome<br>Library Kit |                 | GEN-<br>SCV2-0096   | SCV2 Targeting Primers (STP) | F816145-1       | 212 µL  |
|                                                    |                 |                     | Amplification Primer (AP)    | F816146-1       | 320 µL  |
|                                                    |                 |                     | PCR Master Mix (MM)          | F816147-1       | 1600 µL |
|                                                    | 96<br>reactions |                     | Sample Dilution Buffer       | F816148-1       | 2.4 mL  |
|                                                    |                 |                     | Indexing Buffer              | F816149-1       | 3274 µL |
|                                                    |                 |                     | Indexing Enzyme 1 (E1)       | F816150-1       | 106 µL  |
|                                                    |                 |                     | Indexing Enzyme 2 (E2)       | F816151-1       | 106 µL  |
|                                                    |                 |                     | Indexing Enzyme 3 (E3)       | F816152-1       | 212 µL  |
|                                                    |                 |                     | Elution Buffer               | F816153-1       | 2.4 mL  |
|                                                    |                 |                     | PEG/NaCl Solution            | F816154-1       | 5 mL    |

| Product           | Size         | Catalogue<br>number | Indexing grid per plate*  | Volume<br>per well |
|-------------------|--------------|---------------------|---------------------------|--------------------|
| Indexing plate 1  | 96 reactions | GEN-9754-001        | i5 L501-508 × i7 L701-712 | 18 µL              |
| Indexing plate 2  | 96 reactions | GEN-9754-002        | i5 L501-508 × i7 L713-724 | 18 µL              |
| Indexing plate 3  | 96 reactions | GEN-9754-003        | i5 L501-508 × i7 L725-736 | 18 µL              |
| Indexing plate 4  | 96 reactions | GEN-9754-004        | i5 L501-508 × i7 L737-748 | 18 µL              |
| Indexing plate 5  | 96 reactions | GEN-9754-005        | i5 L501-508 × i7 L749-760 | 18 µL              |
| Indexing plate 6  | 96 reactions | GEN-9754-006        | i5 L509-516 × i7 L701-712 | 18 µL              |
| Indexing plate 7  | 96 reactions | GEN-9754-007        | i5 L509-516 × i7 L713-724 | 18 µL              |
| Indexing plate 8  | 96 reactions | GEN-9754-008        | i5 L509-516 × i7 L725-736 | 18 µL              |
| Indexing plate 9  | 96 reactions | GEN-9754-009        | i5 L509-516 × i7 L737-748 | 18 µL              |
| Indexing plate 10 | 96 reactions | GEN-9754-010        | i5 L509-516 × i7 L749-760 | 18 µL              |
| Indexing plate 11 | 96 reactions | GEN-9754-011        | i5 L517-524 × i7 L701-712 | 18 µL              |
| Indexing plate 12 | 96 reactions | GEN-9754-012        | i5 L517-524 × i7 L713-724 | 18 µL              |
| Indexing plate 13 | 96 reactions | GEN-9754-013        | i5 L517-524 × i7 L725-736 | 18 µL              |
| Indexing plate 14 | 96 reactions | GEN-9754-014        | i5 L517-524 × i7 L737-748 | 18 µL              |
| Indexing plate 15 | 96 reactions | GEN-9754-015        | i5 L517-524 × i7 L749-760 | 18 µL              |

Each indexing plate contains 96 combinatorial dual indexes in an (8) i5 × (12) i7 matrix. See the appendix for index details.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

#### 3. Component storage conditions and warnings

Store all components at -20 °C except the PEG/NaCl Solution, which should be stored at room temperature.



**IMPORTANT**: Separate the key reagents and keep the multiplex PCR reagents in a pre-PCR area, and indexing reagents in a post-PCR area.

### 4. Additional materials and equipment needed

| Material and equipment needed                                          | Vendor                                            |
|------------------------------------------------------------------------|---------------------------------------------------|
| First-strand cDNA synthesis kit                                        | Various                                           |
| AMPure® XP Beads or equivalent                                         | Beckman Coulter (Cat. #A63880, A63881, A63882)    |
| Ethanol (high purity)                                                  | Various                                           |
| Nuclease-Free Water                                                    | Thermo Fisher Scientific (Cat. #AM9938)           |
| Magnetic rack                                                          | Various                                           |
| 0.2 mL thin wall PCR tubes, strips or plates                           | Various                                           |
| qPCR-based Library Quantification Kit                                  | Various                                           |
| Qubit <sup>®</sup> dsDNA HS Assay Kit                                  | Thermo Fisher Scientific (Cat. #Q32851 or Q32854) |
| Qubit <sup>®</sup> Fluorometer                                         | Thermo Fisher Scientific                          |
| Aerosol-resistant, low retention pipettes, tips (2–1000 $\mu\text{L})$ | Various                                           |
| PCR thermal cycler                                                     | Various                                           |
| Minifuge                                                               | Various                                           |

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

### 5. Protocol

#### General notes:

- Before starting the protocol, remove enzymes from -20 °C storage and place on ice for ≥10 minutes to allow each enzyme to equilibrate to 4 °C prior to use.
- Remove PCR Master Mix from -20 °C storage and allow to thaw on ice. Mix by inversion until all components in the master mix are dissolved.
- After thawing the other, non-enzyme reagents, briefly vortex to mix thoroughly, centrifuge each tube to collect contents in the bottom of the tube and place on ice.
- Always add components to each reaction or master mix in the order listed in the protocol. The dual index adaptors are the only reagents added individually to each reaction.
- We recommend using at least 24 reactions from the 96 reaction kit each time in order to prevent running out of reagents due to the 5-10% overage required per set of samples.
- Assemble all reagent master mixes and reactions ON ICE. Scale all reagent volumes according to the number of reactions needed and include 5% excess volume to account for any pipetting losses.
- Prepare your SARS-CoV-2 cDNA samples before beginning this protocol.
- 10% overfill of each reagent is included to enable automation and accommodate master mix formulations. If greater volumes or bulk dispenses are required for your automation platform or workflow, please contact us.

### Avoiding cross-contamination notes:

- Since this kit produces targeted amplicons, it is critical to avoid contaminating samples or initial reactions with amplicons produced during previous experiments. As such, physically separate laboratory space, equipment, and supplies between areas where pre-PCR and post-PCR processes are performed.
- Clean lab areas with 10% bleach (0.5% sodium hypochlorite) between experiments.
- Use barrier pipette tips.
- Always change tips between samples.
- Move the multiplex PCR reactions after amplification to the post-PCR area before opening.
- When preparing No Template Control (NTC) reactions, dispense and seal those reactions prior to opening SARS-CoV-2 cDNA samples in the area.

### Before you start:

- Prepare fresh 80% ethanol solution, approximately 1 mL per sample, using absolute ethanol and nuclease free water.
- Ensure all reagents are thawed and mixed as described above.
- Ensure PEG/NaCl Solution is at room temperature.
- Prepare reagents and master mixes in advance so there are no delays during the protocol. We recommend building master mixes with approximately 5% overage to account for any pipetting errors, etc.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

### 5.1. Programme the thermal cycler

Multiplex PCR thermal cycler programme\*

| Step | Temperature | Time       | Cycles                         | Lid heating |
|------|-------------|------------|--------------------------------|-------------|
| 1    | 98 °C       | 30 seconds |                                |             |
| 2    | 98 °C       | 10 seconds |                                |             |
| 3    | 60 °C       | 5 minutes  | Repeat steps 2-4 for 4 cycles  |             |
| 4    | 65 °C       | 60 seconds |                                | ON - 105 °C |
| 5    | 98 °C       | 10 seconds | Papast stans 5.6 for 22 system |             |
| 6    | 64 °C       | 60 seconds | Repeat steps 5-6 for 25 cycles |             |
| 7    | 65 °C       | 60 seconds |                                |             |
| 8    | 4 °C        | Hold       |                                | OFF         |

\*Note: The number of cycles can vary based on cDNA input quality and quantity.

#### Indexing reaction thermal cycler programme

| Step | Temperature | Time       | Lid heating |
|------|-------------|------------|-------------|
| 1    | 37 °C       | 20 minutes | OFF         |

### 5.2. Multiplex PCR to produce overlapping SARS-CoV-2 amplicons

- 1. Start the thermal cycler and put it on hold with a 98 °C block temperature and 105 °C lid temperature. Allow it to reach temperature before starting step 6 below.
- 2. Add each cDNA sample to a PCR tube or well of a 96-well PCR plate on ice as follows:

| Volume per well (µL) | Component              |
|----------------------|------------------------|
| X (≤ 10 µL)          | cDNA sample            |
| 10-X                 | Sample Dilution Buffer |
| 10                   | Total                  |

- 3. Mix each reagent as follows before setting up the master mix.
  - Vortex the SCV2 Targeting Primer and Amplification Primer tubes.
  - Gently invert the PCR Master Mix tube.
- 4. Make a Multiplex PCR master mix using the following single reaction formulation and scale to the total number of reactions needed including approximately 5% overage.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

| Volume per well (µL) | Component                    |  |
|----------------------|------------------------------|--|
| 2                    | SCV2 Targeting Primers (STP) |  |
| 3                    | Amplification Primer (AP)    |  |
| 15                   | PCR Master Mix               |  |
| 20                   | Total per reaction           |  |

- 5. Carefully mix the Multiplex PCR master mix by vortexing gently.
- 6. Combine 20 μL of the Multiplex PCR master mix with each 10 μL cDNA sample and mix by pipetting, remembering to change tips between samples.
- 7. Place the PCR tube(s) or 96-well plate in the preheated thermal cycler (step 1) and run the multiplex PCR programme.

**NOTE:** Near the end of the thermal cycler programme, prepare an Indexing reaction mix in the post-PCR area as outlined in the next section.

8. After PCR amplification is complete, move samples to the post-PCR area before proceeding.

### 5.3. Indexing reaction master mix set-up

Make an Indexing reaction master mix on ice using the following formulation per reaction/sample and scale to the total number of reactions needed including approximately 5% overage.

| Volume per well (µL) | Component              |
|----------------------|------------------------|
| 31                   | Indexing Buffer        |
| 1                    | Indexing Enzyme 1 (E1) |
| 1                    | Indexing Enzyme 2 (E2) |
| 2                    | Indexing Enzyme 3 (E3) |
| 35                   | Total per reaction     |

### 5.4. Size selection and clean-up #1

- 1. Bring AMPure XP (or similar) Beads and multiplex PCR samples to room temperature. Briefly, vortex the AMPure XP beads to mix before use.
- 2. Add 36  $\mu$ L of AMPure XP Beads to each 30  $\mu$ L multiplex PCR sample. Mix each sample by vortexing and then do a quick spin to move contents to the bottom of the tube or well.
- 3. Incubate at room temperature for 5 minutes; do not use a magnetic rack.
- 4. Place the sample tube or plate in a magnetic rack for 5 minutes (until the supernatant becomes clear).
- 5. With the tube/plate in the magnetic rack, gently remove the supernatant with a pipette and discard.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

- 6. Wash the beads by adding 180 μL of 80% ethanol to each tube/well. Wait 30 seconds, remove the ethanol with a pipette and discard the ethanol.
- 7. Repeat the 80% ethanol wash (step 6).
- 8. Quick spin the bead-cleaned samples and place back on the magnetic rack. Using a P10 pipette, carefully remove any residual ethanol present at the bottom of the tube without disturbing the bead pellet.

### 5.5. Indexing

- 1. Start the Indexing programme on the thermal cycler, and immediately put it on hold so the block can reach 37 °C.
- 2. Add 35 µL of the cold Indexing reaction master mix to each sample AMPure XP Bead pellet.
- Transfer15 μL of a CDI mix from a well of an Indexing Plate to the Indexing reaction tube/well containing the amplicons and beads. Repeat this step for all samples ensuring that a different CDI pair is transferred to each sample, while recording which CDI pair is used per sample.
- 4. Place the Indexing reaction tubes or plate into the thermal cycler, and resume the Indexing programme (20 minutes at 37 °C) with the heated lid turned off.

### 5.6. Size selection and clean-up #2

- 1. Bring the PEG/NaCl Solution and indexed sample tubes or plate to room temperature. Briefly vortex the PEG/NaCl Solution before use.
- 2. Add 42.5 μL of PEG/NaCl Solution to each 50 μL indexed sample containing AMPure XP Beads from the first clean-up/size selection step. Mix each sample by vortexing and then do a quick spin to move contents to the bottom of the tube or well.
- 3. Incubate at room temperature for 5 minutes; do not use a magnetic rack.
- 4. Place the sample tube or plate in a magnetic rack for 5 minutes (until the supernatant becomes clear).
- 5. With the tube/plate in the magnetic rack, gently remove the supernatant with a pipette and discard.
- 6. Wash the beads by adding 180  $\mu$ L of 80% ethanol to each tube/well. Wait 30 seconds, remove the ethanol with a pipette and discard the ethanol.
- 7. Repeat the 80% ethanol wash (step 6).
- 8. Quick spin the bead-cleaned samples and place back on the magnetic rack. Using a P10 pipette, carefully remove any residual ethanol present at the bottom of the tube without disturbing the bead pellet.
- Immediately add 22 μL Elution Buffer to each sample pellet, remove from the magnetic rack and mix the beads and buffer gently by pipetting up and down 10 times (Do not vortex).
- 10. Incubate at room temperature for 2 minutes; do not use a magnetic rack during the incubation.
- 11. Place the tube/plate in a magnetic rack for 2-3 minutes (until the supernatant becomes clear).
- 12. Transfer 20 μL of supernatant containing your cleaned amplicon library to a new PCR tube or well of a 96-well plate. Be careful to avoid transferring any magnetic beads to your final tube/well.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

### 5.7. Library quantification

Notes

- Because the final amplicon libraries are not PCR amplified after the Indexing step, these libraries are a mixture of fully adapted/sequenceable library fragments and partially adapted/ unsequenceable library fragments. Therefore, qPCR library quantification must be used instead of fluorometric assays to quantify the amount of sequenceable library fragments in each sample.
- 1. Quantify each library using a qPCR library quantification kit according to the manufacturer's instructions.
- 2. We recommend quantifying a 1:10,000 dilution of each library in triplicate.
- 3. Use library qPCR standards of approximately 265 bp in size, and an estimated SARS-CoV-2 amplicon library size of 265 bp to calculate library molarity in combinations with the qPCR Ct values for each library.

### 5.8. Sequencing

- Final libraries are compatible with and can be run on any Illumina sequencer.
- Please refer to the latest version of the Illumina Experiment Manager for instructions on how to setup a sample sheet.
- Be sure to select the appropriate workflow parameters needed to sequence these amplicons:
  - Read Type: "Paired End"
  - Cycle Read 1: "151, Cycle Read 2: "151
- See the Appendix B and web resources for combinatorial dual index sequences per well of each indexing plate.
- Be certain that "Use adapter trimming" and Use adapter trimming Read 2" are selected. Failure to trim adapter sequences will result in incorrect primer trimming and inaccurate variant calling. To overcome this problem, enable automatic trimming by the Illumina sequencer software or perform adaptor trimming by Trimmomatic during data analysis.
- Each amplicon in these libraries has target regions that overlap with the target regions from adjacent amplicons. As such, the synthetic primer sequences incorporated into each amplicon should also also be trimmed from the final sequencing reads to ensure that only the target regions are being analysed for variants. Primerclip, which is publically available, can be used for this trimming step.
- Sequencing of amplicon libraries constructed using this kit have been validated for sequencing without added PhiX on both the MiSeq and the MiniSeq sequencers. For sequencing on the NextSeq 550, please consult the Illumina recommendations for PhiX spike-ins when sequencing low diversity amplicon libraries such as these.

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

#### 6. Technical support

If you require any further support, please do not hesitate to contact our Technical Support Team: <u>techsupport@lgcgroup.com</u>.

**Product guarantee:** LGC, Biosearch Technologies guarantees that this product will perform as specified for one year from the date of shipment.

### 7. Appendices

#### 7.1. Appendix A: Sequencing depth and multiplexing options

 Biosearch Technologies recommends an average sequencing depth of 200X-700X per SARS-CoV-2 library. This depth enables accurate identification of variants within the viral genome. You can estimate the level of multiplexing possible using the following formula. We recommend some initial empirical testing prior to setting up large scale multiplexing sequencing runs.

**Number of multiplexed samples** = number of paired end reads per run 341 \* intended average read depth

#### 7.2. Appendix B: Indexing Plate 1 sequences and layout

 The following table lists all the combinatorial dual indexes used in Indexing Plate 1 (Cat. No. GEN-9754-001). These indexes equal the Illumina TruSeq indexes with the same i5 and i7 numbers. For a listing of the indexes present and their layout in Indexing Plates 2-15, please visit the Resources section of the NxSeq SARS-CoV-2 Whole Genome Library Kit product webpage or contact our Technical Support Team.

| i5 Index name | i5 Index sequence | i7 Index name | i7 Index Sequence |
|---------------|-------------------|---------------|-------------------|
| L501          | TATAGCCT          | L701          | ATTACTCG          |
| L502          | ATAGAGGC          | L702          | TCCGGAGA          |
| L503          | CCTATCCT          | L703          | CGCTCATT          |
| L504          | GGCTCTGA          | L704          | GAGATTCC          |
| L505          | AGGCGAAG          | L705          | ATTCAGAA          |
| L506          | TAATCTTA          | L706          | GAATTCGT          |
| L507          | CAGGACGT          | L707          | CTGAAGCT          |
| L508          | GTACTGAC          | L708          | TAATGCGC          |
|               |                   | L709          | CGGCTATG          |
|               |                   | L710          | TCCGCGAA          |
|               |                   | L711          | TCTCGCGC          |
|               |                   | L712          | AGCGATAG          |

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

| Index plate ID_<br>basic sample ID | Plate<br>well | i5 Index<br>name | i5 Index<br>sequence | i7 Index<br>name | i7 Index<br>sequence |
|------------------------------------|---------------|------------------|----------------------|------------------|----------------------|
| Plate01_01                         | A01           | L501             | TATAGCCT             | L701             | ATTACTCG             |
| Plate01_02                         | B01           | L502             | ATAGAGGC             | L701             | ATTACTCG             |
| Plate01_03                         | C01           | L503             | CCTATCCT             | L701             | ATTACTCG             |
| Plate01_04                         | D01           | L504             | GGCTCTGA             | L701             | ATTACTCG             |
| Plate01_05                         | E01           | L505             | AGGCGAAG             | L701             | ATTACTCG             |
| Plate01_06                         | F01           | L506             | ТААТСТТА             | L701             | ATTACTCG             |
| Plate01_07                         | G01           | L507             | CAGGACGT             | L701             | ATTACTCG             |
| Plate01_08                         | H01           | L508             | GTACTGAC             | L701             | ATTACTCG             |
| Plate01_09                         | A02           | L501             | TATAGCCT             | L702             | TCCGGAGA             |
| Plate01_10                         | B02           | L502             | ATAGAGGC             | L702             | TCCGGAGA             |
| Plate01_11                         | C02           | L503             | CCTATCCT             | L702             | TCCGGAGA             |
| Plate01_12                         | D02           | L504             | GGCTCTGA             | L702             | TCCGGAGA             |
| Plate01_13                         | E02           | L505             | AGGCGAAG             | L702             | TCCGGAGA             |
| Plate01_14                         | F02           | L506             | ТААТСТТА             | L702             | TCCGGAGA             |
| Plate01_15                         | G02           | L507             | CAGGACGT             | L702             | TCCGGAGA             |
| Plate01_16                         | H02           | L508             | GTACTGAC             | L702             | TCCGGAGA             |
| Plate01_17                         | A03           | L501             | TATAGCCT             | L703             | CGCTCATT             |
| Plate01_18                         | B03           | L502             | ATAGAGGC             | L703             | CGCTCATT             |
| Plate01_19                         | C03           | L503             | CCTATCCT             | L703             | CGCTCATT             |
| Plate01_20                         | D03           | L504             | GGCTCTGA             | L703             | CGCTCATT             |
| Plate01_21                         | E03           | L505             | AGGCGAAG             | L703             | CGCTCATT             |
| Plate01_22                         | F03           | L506             | ТААТСТТА             | L703             | CGCTCATT             |
| Plate01_23                         | G03           | L507             | CAGGACGT             | L703             | CGCTCATT             |
| Plate01_24                         | H03           | L508             | GTACTGAC             | L703             | CGCTCATT             |
| Plate01_25                         | A04           | L501             | TATAGCCT             | L704             | GAGATTCC             |
| Plate01_26                         | B04           | L502             | ATAGAGGC             | L704             | GAGATTCC             |
| Plate01_27                         | C04           | L503             | CCTATCCT             | L704             | GAGATTCC             |
| Plate01_28                         | D04           | L504             | GGCTCTGA             | L704             | GAGATTCC             |
| Plate01_29                         | E04           | L505             | AGGCGAAG             | L704             | GAGATTCC             |
| Plate01_30                         | F04           | L506             | ТААТСТТА             | L704             | GAGATTCC             |
| Plate01_31                         | G04           | L507             | CAGGACGT             | L704             | GAGATTCC             |
| Plate01 32                         | H04           | L508             | GTACTGAC             | L704             | GAGATTCC             |

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

| Plate01_33 | A05 | L501 | TATAGCCT | L705 | ATTCAGAA |
|------------|-----|------|----------|------|----------|
| Plate01_34 | B05 | L502 | ATAGAGGC | L705 | ATTCAGAA |
| Plate01_35 | C05 | L503 | CCTATCCT | L705 | ATTCAGAA |
| Plate01_36 | D05 | L504 | GGCTCTGA | L705 | ATTCAGAA |
| Plate01_37 | E05 | L505 | AGGCGAAG | L705 | ATTCAGAA |
| Plate01_38 | F05 | L506 | ΤΑΑΤΟΤΤΑ | L705 | ATTCAGAA |
| Plate01_39 | G05 | L507 | CAGGACGT | L705 | ATTCAGAA |
| Plate01_40 | H05 | L508 | GTACTGAC | L705 | ATTCAGAA |
| Plate01_41 | A06 | L501 | TATAGCCT | L706 | GAATTCGT |
| Plate01_42 | B06 | L502 | ATAGAGGC | L706 | GAATTCGT |
| Plate01_43 | C06 | L503 | CCTATCCT | L706 | GAATTCGT |
| Plate01_44 | D06 | L504 | GGCTCTGA | L706 | GAATTCGT |
| Plate01_45 | E06 | L505 | AGGCGAAG | L706 | GAATTCGT |
| Plate01_46 | F06 | L506 | ΤΑΑΤΟΤΤΑ | L706 | GAATTCGT |
| Plate01_47 | G06 | L507 | CAGGACGT | L706 | GAATTCGT |
| Plate01_48 | H06 | L508 | GTACTGAC | L706 | GAATTCGT |
| Plate01_49 | A07 | L501 | TATAGCCT | L707 | CTGAAGCT |
| Plate01_50 | B07 | L502 | ATAGAGGC | L707 | CTGAAGCT |
| Plate01_51 | C07 | L503 | CCTATCCT | L707 | CTGAAGCT |
| Plate01_52 | D07 | L504 | GGCTCTGA | L707 | CTGAAGCT |
| Plate01_53 | E07 | L505 | AGGCGAAG | L707 | CTGAAGCT |
| Plate01_54 | F07 | L506 | ΤΑΑΤΟΤΤΑ | L707 | CTGAAGCT |
| Plate01_55 | G07 | L507 | CAGGACGT | L707 | CTGAAGCT |
| Plate01_56 | H07 | L508 | GTACTGAC | L707 | CTGAAGCT |
| Plate01_57 | A08 | L501 | TATAGCCT | L708 | TAATGCGC |
| Plate01_58 | B08 | L502 | ATAGAGGC | L708 | TAATGCGC |
| Plate01_59 | C08 | L503 | CCTATCCT | L708 | TAATGCGC |
| Plate01_60 | D08 | L504 | GGCTCTGA | L708 | TAATGCGC |
| Plate01_61 | E08 | L505 | AGGCGAAG | L708 | TAATGCGC |
| Plate01_62 | F08 | L506 | ΤΑΑΤΟΤΤΑ | L708 | TAATGCGC |
| Plate01_63 | G08 | L507 | CAGGACGT | L708 | TAATGCGC |
| Plate01_64 | H08 | L508 | GTACTGAC | L708 | TAATGCGC |
| Plate01_65 | A09 | L501 | TATAGCCT | L709 | CGGCTATG |
| Plate01_66 | B09 | L502 | ATAGAGGC | L709 | CGGCTATG |

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

| Plate01_67 | C09 | L503 | CCTATCCT | L709 | CGGCTATG |
|------------|-----|------|----------|------|----------|
| Plate01_68 | D09 | L504 | GGCTCTGA | L709 | CGGCTATG |
| Plate01_69 | E09 | L505 | AGGCGAAG | L709 | CGGCTATG |
| Plate01_70 | F09 | L506 | ТААТСТТА | L709 | CGGCTATG |
| Plate01_71 | G09 | L507 | CAGGACGT | L709 | CGGCTATG |
| Plate01_72 | H09 | L508 | GTACTGAC | L709 | CGGCTATG |
| Plate01_73 | A10 | L501 | TATAGCCT | L710 | TCCGCGAA |
| Plate01_74 | B10 | L502 | ATAGAGGC | L710 | TCCGCGAA |
| Plate01_75 | C10 | L503 | CCTATCCT | L710 | TCCGCGAA |
| Plate01_76 | D10 | L504 | GGCTCTGA | L710 | TCCGCGAA |
| Plate01_77 | E10 | L505 | AGGCGAAG | L710 | TCCGCGAA |
| Plate01_78 | F10 | L506 | ΤΑΑΤΟΤΤΑ | L710 | TCCGCGAA |
| Plate01_79 | G10 | L507 | CAGGACGT | L710 | TCCGCGAA |
| Plate01_80 | H10 | L508 | GTACTGAC | L710 | TCCGCGAA |
| Plate01_81 | A11 | L501 | TATAGCCT | L711 | TCTCGCGC |
| Plate01_82 | B11 | L502 | ATAGAGGC | L711 | TCTCGCGC |
| Plate01_83 | C11 | L503 | CCTATCCT | L711 | TCTCGCGC |
| Plate01_84 | D11 | L504 | GGCTCTGA | L711 | TCTCGCGC |
| Plate01_85 | E11 | L505 | AGGCGAAG | L711 | TCTCGCGC |
| Plate01_86 | F11 | L506 | ΤΑΑΤΟΤΤΑ | L711 | TCTCGCGC |
| Plate01_87 | G11 | L507 | CAGGACGT | L711 | TCTCGCGC |
| Plate01_88 | H11 | L508 | GTACTGAC | L711 | TCTCGCGC |
| Plate01_89 | A12 | L501 | TATAGCCT | L712 | AGCGATAG |
| Plate01_90 | B12 | L502 | ATAGAGGC | L712 | AGCGATAG |
| Plate01_91 | C12 | L503 | CCTATCCT | L712 | AGCGATAG |
| Plate01_92 | D12 | L504 | GGCTCTGA | L712 | AGCGATAG |
| Plate01_93 | E12 | L505 | AGGCGAAG | L712 | AGCGATAG |
| Plate01_94 | F12 | L506 | ΤΑΑΤΟΤΤΑ | L712 | AGCGATAG |
| Plate01_95 | G12 | L507 | CAGGACGT | L712 | AGCGATAG |
| Plate01_96 | H12 | L508 | GTACTGAC | L712 | AGCGATAG |
|            |     |      |          |      |          |

NxSeq SARS-CoV-2 Whole Genome Library Kit, 96 reactions

#### 7.3. Appendix C: Basic overview of the NxSeq SARS-CoV-2 Whole Genome Library Kit protocol

The following figure illustrates the basic library preparation method used in this targeted amplicon-seq protocol. Importantly, the final library will be composed of a variety of fragments. There are 341 total overlapping amplicons produced by this kit although in some cases, the forward and reverse primers from adjacent primers may produce longer amplicons that span from the 5' end of the first amplicon to the 3' end of the downstream adjacent amplicon. This figure is only showing the correct final library fragments for a few of the possible amplicons across the entire SARS-CoV-2 viral genome covered by this kit. Please note that since the final library is not PCR amplified, there will be some fragments in the library that do not have adaptors at both ends and are not sequenceable (not shown).



Figure 1. Overview of targeted amplicon library preparation using the NxSeq SARS-CoV-2 Whole Genome Library Kit.

#### Notice of limited label license, copyright, patents, warranties, disclaimers and trademarks.

A complete list of trademarks, registered trademarks, limited label license, etc. held by Lucigen Corp., a legal entity of Biosearch Technologies, can be found at <u>http://www.lucigen.com/Legal-Information.</u> <u>html</u>.



### Integrated tools. Accelerated science.

**f in** @LGCBiosearch

biosearchtech.com

All trademarks and registered trademarks mentioned herein are the property of their respective owners. All other trademarks and registered trademarks are the property of LGC and its subsidiaries. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording or any retrieval system, without the written permission of the copyright holder. © LGC Limited, 2021. All rights reserved. GEN/905/SW/0421

