This alternative adherent cell protocol utilizes a methanol based fixation which can be effective at reducing background fluorescence under certain circumstances.

General Protocol & Storage

Product Description

A set of Stellaris RNA FISH Probes is comprised of up to 48 singly labeled oligonucleotides designed to selectively bind to targeted transcripts. Stellaris RNA FISH Probes bound to target RNA produce fluorescent signals that permit detection of single RNA molecules as diffraction-limited spots by conventional fluorescence microscopy.

Storage Guidelines

Stellaris RNA FISH Probes

Stellaris RNA FISH Probes are shipped dry and can be stored at +2 to +8 °C in this state. Dissolved probe mix should be subjected to a minimum number of freeze-thaw cycles. For daily and short-term use of dissolved probe mix, storage at +2 to +8 °C in the dark for up to a month is recommended. For storage lasting longer than a month, we recommend aliquoting and freezing probes in the dark at -15 to -30 °C.

Stellaris RNA FISH Hybridization Buffer

Stellaris RNA FISH Hybridization Buffer should be stored at +2 to +8 °C for short-term and long-term use.

Stellaris RNA FISH Wash Buffer A and Wash Buffer B

Stellaris RNA FISH Wash Buffers A and B should be stored at room temperature for short-term and long-term use.

Reagents and Equipment

Reagents and Consumables:

a) TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0)
b) Methanol
c) Glacial Acetic Acid
d) 10X Phosphate Buffered Saline (PBS), RNase-free
e) Nuclease-free water
f) Deionized Formamide
g) Stellaris RNA FISH Hybridization Buffer (Biosearch Technologies Cat# SMF-HB1-10)
h) Stellaris RNA FISH Wash Buffer A (Biosearch Technologies Cat# SMF-WA1-60)
i) Stellaris RNA FISH Wash Buffer B (Biosearch Technologies Cat# SMF-WB1-20)
j) 4′,6-diamidino-2-phenylindole (DAPI)
k) Vectashield® Mounting Medium (Vector Laboratories Cat #H-1000)
l) 18 mm round #1 coverglass
m) 12-well culture plates
n) RNase free consumables such as pipette tips
o) Humidified chamber (or equivalent): 150 mm tissue culture plate; bottom lined evenly with a flat water-saturated paper towel and a single layer of Parafilm® placed on top of the paper towel
p) Superfrost™ Plus Microscope slides
q) 37 °C laboratory oven
Microscope:
- Wide-field fluorescence microscope (e.g., Nikon Eclipse Ti or equivalent). We provide limited support for confocal applications.
- A high numerical aperture (>1.3) and 60-100x oil-immersion objective.
- Strong light source, such as a mercury or metal-halide lamp (newer LED-based light sources may also be sufficient).
- Filter sets appropriate for the fluorophores.
- Standard cooled CCD camera, ideally optimized for low-light level imaging rather than speed (13 μm pixel size or less is ideal).

Preparation of Reagents

NOTE: When performing Stellaris RNA FISH, it is imperative to limit RNA degradation. Please ensure that all consumables and reagents are RNase-free. Recipes below are for set volumes. Please adjust accordingly.

Reconstituting the dried probe stock:
- **ShipReady Probe Set (1 nmol):** A ShipReady probe set can provide up to 80 hybridizations. Re-dissolve the dried oligonucleotide probe blend in 80 μL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to create a probe stock of 12.5 μM. Mix well by pipetting up and down, and then vortex and centrifuge briefly.
- **DesignReady or Custom Probe Set (5 nmol):** A DesignReady or custom probe set can provide up to 400 hybridizations. Re-dissolve the dried oligonucleotide probe blend in 400 μL of TE buffer (10 mM Tris-HCl, 1 mM EDTA, pH 8.0) to create a probe stock of 12.5 μM. Mix well by pipetting up and down, and then vortex and centrifuge briefly.

Fixation Solution:
Final composition is 3:1 Methanol-Glacial Acetic Acid
- Make fresh for each experiment.
- For a final volume of 10 mL, mix:
 - 7.5 mL Methanol
 - 2.5 mL Glacial Acetic Acid

Hybridization Buffer:
Final composition is 10% (vol./vol.) formamide in Hybridization Buffer
- Hybridization Buffer should be mixed fresh for each experiment:
 - Due to viscosity of the solution, we recommend accounting for a 10% final volume excess in order to have enough Hybridization Buffer for all of your samples.
- For a final volume of 1 mL, mix:
 - 900 μL Stellaris RNA FISH Hybridization Buffer (Biosearch Technologies Cat# SMF-HB1-10)
 - 100 μL Deionized Formamide
 - NOTE: Do not freeze Hybridization Buffer.

WARNING! Formamide is a teratogen that is easily absorbed through the skin and should be used in a chemical fume hood.

WARNING! Be sure to let the formamide warm to room temperature before opening the bottle.

Wash Buffer A (10 mL):
Final composition is 10% (vol./vol.) formamide in 1X Wash Buffer A
- Mix and dilute Wash Buffer A fresh for each experiment:
 - For a final volume of 10 mL, mix:
 - 2 mL Stellaris RNA FISH Wash Buffer A (Biosearch Technologies Cat# SMF-WA1-60)
 - Add 7 mL Nuclease-free water
 - Add 1 mL Deionized Formamide
 - Mix well by vortexing gently.

Wash Buffer B:
- Add Nuclease-free water to Wash Buffer B bottle upon first use.
 - Add 88 mL of Nuclease-free water to bottle (Biosearch Technologies Cat# SMF-WB1-20) before use. Mix thoroughly.
Nuclear Stain for use after hybridization:

4',6-diamidino-2-phenylindole (DAPI) prepared in Wash Buffer A (see above) at 5 ng/mL. This solution is to be used in Step J below.

Mounting media:

Vectashield Mounting Medium from Vector Laboratories (#H-1000).

NOTE: For best results, samples mounted with Vectashield Mounting Medium should be imaged the same day.

Alternative Protocol for Adherent Cells

NOTE: This protocol has been adapted for a 12-well plate system. To adapt this protocol for your preferred system, volumes should be adjusted accordingly.

Alternative Fixation of Adherent Cell Lines

a) Grow cells on 18 mm round #1 coverglass in a 12-well cell culture plate.
b) Aspirate growth medium, and wash with 1 mL of 1X PBS.
c) To fix and permeabilize cells, add 1 mL of methanol-acetic acid (MeOH-AcOH) fixation solution.
d) Incubate at room temperature for 10 minutes.
e) Cells can be stored at +2 to +8 °C in MeOH-AcOH up to 48 hours before hybridization. Do not use a coverglass containing adherent cells if the MeOH-AcOH has completely evaporated.

Hybridization in Adherent Cells

If frozen before using, warm the reconstituted probe solution to room temperature. Mix well by vortexing, then centrifuge briefly.

To prepare the Hybridization Buffer containing probe, add 1 µL of probe stock solution to 100 µL of Hybridization Buffer, and then vortex and centrifuge (enough for one coverglass). This creates a working probe solution of 125 nM. This solution will be used on steps d and e.

a) Aspirate the MeOH-AcOH off the coverglass containing adherent cells within the 12-well plate.
b) Add 1 mL of Wash Buffer A (see recipe above), and incubate at room temperature for 2-5 minutes.
c) Assemble humidified chamber: 150 mm tissue culture plate; bottom lined evenly with a flat water-saturated paper towel and a single layer of Parafilm placed on top of the paper towel. This chamber will help prevent evaporation of the probe solution from under the coverglass.
d) Within the humidified chamber, dispense 100 µL of the Hybridization Buffer containing probe onto the Parafilm.
e) Gently transfer the coverglass, cells side down, onto the 100 µL drop of Hybridization Buffer containing probe.
f) Cover the humidified chamber with the tissue culture lid, and seal with Parafilm.
g) Incubate in the dark at 37 °C for 2 hours. (Incubation can be continued up to 16 hours).
h) Gently transfer the coverglass, cells side up, to a fresh 12-well plate containing 1 mL of Wash Buffer A.
i) Incubate in the dark at 37 °C for 30 minutes.
j) Aspirate Wash Buffer A, and then add 1 mL of DAPI nuclear stain (Wash Buffer A consisting of 5 ng/mL DAPI) to counterstain the nuclei.
k) Incubate in the dark at 37 °C for 30 minutes.
l) Aspirate the DAPI staining buffer, and then add 1 mL of Wash Buffer B. Incubate at room temperature for 2-5 minutes.
m) Add a small drop (approximately 15 µL) of Vectashield Mounting Medium onto a microscope slide, and mount coverglass onto the slide, cells side down.
n) Gently wick away excess anti-fade from the perimeter of the coverglass.
o) Seal the coverglass perimeter with clear nail polish, and allow to dry.
p) If necessary, gently wipe away any dried salt off the coverglass using water.

Proceed to imaging.

References

Guidelines for Citing the Use of Stellaris RNA FISH Probes and Methods in Scientific Publications

Please acknowledge the use of Stellaris RNA FISH Probes and/or protocols in the experimental Materials and Methods or Methods section of your manuscript. Refer to the following examples as guidelines for proper citation of the Stellaris RNA FISH probe sets and/or protocols:

Citing ShipReady and DesignReady Probe Sets: “Stellaris® FISH Probes recognizing <catalogued gene set name> and labeled with <your dye of choice> (Catalog #, Biosearch Technologies, Inc., Petaluma, CA) were hybridized to <samples>, following the manufacturer's instructions available online at www.biosearchtech.com/stellarisprotocols. Briefly, <describe any deviations from the published protocol or a short summary of what was actually performed>.”

Citing Custom Probe Sets Designed with the Stellaris® FISH Probe Designer: “Custom Stellaris® FISH Probes were designed against <your RNA of interest (include NM# and nucleotides covered if relevant)> by utilizing the Stellaris® FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA) available online at www.biosearchtech.com/stellarisdesigner. The <samples> were hybridized with the <your RNA of interest> Stellaris FISH Probe set labeled with <your dye of choice> (Biosearch Technologies, Inc.), following the manufacturer's instructions available online at www.biosearchtech.com/stellarisprotocols. Briefly, <describe any deviations from the published protocol or a short summary of what was actually performed>.”

Citing Custom Probe Sets Utilizing Previously Published Sequences: “Custom Stellaris® FISH Probes recognizing <your RNA of interest>, were purchased from Biosearch Technologies, Inc. (Petaluma, CA). Probe set sequences utilized in the experiments have been previously described <cite published manuscript>. The <samples> were hybridized with the <your RNA of interest> Stellaris® FISH Probe set, following the manufacturer's instructions available online at www.biosearchtech.com/stellarisprotocols. Briefly, <describe any deviations from the published protocol or a short summary of what was actually performed>.”

Citing 3’ Amine Oligos in Plates Used for Stellaris RNA FISH Designed with the Stellaris® FISH Probe Designer: “Custom 3’ amine oligos in plates were designed against <your RNA of interest (include NM# and nucleotides covered if relevant)> by utilizing the Stellaris® FISH Probe Designer (Biosearch Technologies, Inc., Petaluma, CA) available online at www.biosearchtech.com/stellarisdesigner. Probes were labeled with <your dye of choice> using <insert your labeling protocol or citation of previously published labeling protocol>. The <samples> were hybridized with the <your RNA of interest> oligonucleotides (Biosearch Technologies, Inc.), following the manufacturer's instructions available online at www.biosearchtech.com/stellarisprotocols. Briefly, <describe any deviations from the published protocol or a short summary of what was actually performed>.”

Citing 3’ Amine Oligos in Plates Used for Stellaris RNA FISH Using Previously Published Sequences: “Custom 3’ amine oligos in plates recognizing <your RNA of interest (include NM# and nucleotides covered if relevant)> were purchased from Biosearch Technologies, Inc. (Petaluma, CA). Probe set sequences utilized in the experiments have been previously described <cite published manuscript>. Probes were labeled with <your dye of choice> using <insert your labeling protocol or citation of previously published labeling protocol>. The <samples> were hybridized with the <your RNA of interest> oligonucleotides (Biosearch Technologies, Inc.), following the manufacturer's instructions available online at www.biosearchtech.com/stellarisprotocols. Briefly, <describe any deviations from the published protocol or a short summary of what was actually performed>.”

Technical Support

If you require additional information or technical assistance please feel free to e-mail our Technical Support Group at: techsupport@biosearchtech.com. Our knowledgeable staff is also available for telephone consultation from 8:00 AM to 5:00 PM, Monday through Friday, Pacific Time. Please contact us at:

1.800.GENOME.1 (436.6631) US & Canada only
+1.415.883.8400 telephone
+1.415.883.8488 fax